Imaginary numbers and quadratic equations

Using the imaginary number i it is possible to solve all quadratic equations.
Example Use the formula for solving a quadratic equation to solve $x^{2}-2 x+10=0$.
Solution We use the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

With $a=1, b=-2$ and $c=10$ we find

$$
\begin{aligned}
x & =\frac{2 \pm \sqrt{(-2)^{2}-(4)(1)(10)}}{2} \\
& =\frac{2 \pm \sqrt{4-40}}{2} \\
& =\frac{2 \pm \sqrt{-36}}{2} \\
& =\frac{2 \pm 6 \mathrm{i}}{2} \\
& =1 \pm 3 \mathrm{i}
\end{aligned}
$$

There are two solutions: $x=1+3 \mathrm{i}$ and $x=1-3 \mathrm{i}$.
Example Use the formula for solving a quadratic equation to solve $2 x^{2}+x+1=0$.
Solution We use the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

With $a=2, b=1$ and $c=1$ we find

$$
\begin{aligned}
x & =\frac{-1 \pm \sqrt{1^{2}-(4)(2)(1)}}{2(2)} \\
& =\frac{-1 \pm \sqrt{-7}}{4} \\
& =\frac{-1 \pm \sqrt{7} \mathrm{i}}{4} \\
& =-\frac{1}{4} \pm \frac{\sqrt{7}}{4} \mathrm{i}
\end{aligned}
$$

There are two solutions: $x=-\frac{1}{4}+\frac{\sqrt{7}}{4} \mathrm{i}$ and $x=-\frac{1}{4}-\frac{\sqrt{7}}{4} \mathrm{i}$
We have seen how we can write down the solution of any quadratic equation.
A number like $x=-\frac{1}{4}+\frac{\sqrt{7}}{4} \mathrm{i}$, which has a real part, (here the real part is $-\frac{1}{4}$), and an imaginary part, (here the imaginary part is $\frac{\sqrt{7}}{4}$), is called a complex number. We will describe complex numbers more formally in the next unit.

